Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
1.
J Sch Health ; 2023 Jun 04.
Article in English | MEDLINE | ID: covidwho-20240451

ABSTRACT

BACKGROUND: Per Centers for Disease Control and Prevention guidance, students with COVID-19 may end isolation after 5 days if symptoms are improving; some individuals may still be contagious. Rapid antigen testing identifies possibly infectious virus. We report on a test-to-return (TTR) program in a Massachusetts school district to inform policy decisions about return to school after COVID-19. METHODS: During the 2021-2022 Omicron BA.1 surge, students with COVID-19 could return on day 6-10 if they met symptom criteria and had a negative rapid test; students with positive rapid tests and those who declined TTR remained isolated until day 11. TTR positivity rates were compared by grade level, vaccination status, symptom status, and day of infection. RESULTS: 31.4% of students had a positive TTR rapid test; there were no differences by grade or vaccination status. Ever-symptomatic students were more likely to have a positive rapid test (75/174 [43.1%] vs 18/104 [17.3%]). For ever-symptomatic students, TTR positivity decreased by day of infection. CONCLUSIONS: A substantial proportion of students may still be contagious 6 days after onset of COVID-19 infection. TTR programs may increase or reduce missed school days, depending on when return is otherwise allowed (day 6 or 11). The impact of TTR programs on school-associated transmission remains unknown.

2.
J Infect Dis ; 226(11): 1887-1896, 2022 Nov 28.
Article in English | MEDLINE | ID: covidwho-2135319

ABSTRACT

BACKGROUND: Despite the advent of safe and effective coronavirus disease 2019 vaccines, pervasive inequities in global vaccination persist. METHODS: We projected health benefits and donor costs of delivering vaccines for up to 60% of the population in 91 low- and middle-income countries (LMICs). We modeled a highly contagious (Re at model start, 1.7), low-virulence (infection fatality ratio [IFR], 0.32%) "Omicron-like" variant and a similarly contagious "severe" variant (IFR, 0.59%) over 360 days, accounting for country-specific age structure and healthcare capacity. Costs included vaccination startup (US$630 million) and per-person procurement and delivery (US$12.46/person vaccinated). RESULTS: In the Omicron-like scenario, increasing current vaccination coverage to achieve at least 15% in each of the 91 LMICs would prevent 11 million new infections and 120 000 deaths, at a cost of US$0.95 billion, for an incremental cost-effectiveness ratio (ICER) of US$670/year of life saved (YLS). Increases in vaccination coverage to 60% would additionally prevent up to 68 million infections and 160 000 deaths, with ICERs

Subject(s)
COVID-19 , Developing Countries , Humans , Cost-Benefit Analysis , COVID-19/prevention & control , COVID-19 Vaccines , Vaccination
3.
JAMA Pediatr ; 176(10): 1050-1051, 2022 10 01.
Article in English | MEDLINE | ID: covidwho-2074881

Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Schools
4.
JAMA Pediatr ; 176(7): 679-689, 2022 07 01.
Article in English | MEDLINE | ID: covidwho-1802005

ABSTRACT

Importance: In addition to illness, the COVID-19 pandemic has led to historic educational disruptions. In March 2021, the federal government allocated $10 billion for COVID-19 testing in US schools. Objective: Costs and benefits of COVID-19 testing strategies were evaluated in the context of full-time, in-person kindergarten through eighth grade (K-8) education at different community incidence levels. Design, Setting, and Participants: An updated version of a previously published agent-based network model was used to simulate transmission in elementary and middle school communities in the United States. Assuming dominance of the delta SARS-CoV-2 variant, the model simulated an elementary school (638 students in grades K-5, 60 staff) and middle school (460 students grades 6-8, 51 staff). Exposures: Multiple strategies for testing students and faculty/staff, including expanded diagnostic testing (test to stay) designed to avoid symptom-based isolation and contact quarantine, screening (routinely testing asymptomatic individuals to identify infections and contain transmission), and surveillance (testing a random sample of students to identify undetected transmission and trigger additional investigation or interventions). Main Outcomes and Measures: Projections included 30-day cumulative incidence of SARS-CoV-2 infection, proportion of cases detected, proportion of planned and unplanned days out of school, cost of testing programs, and childcare costs associated with different strategies. For screening policies, the cost per SARS-CoV-2 infection averted in students and staff was estimated, and for surveillance, the probability of correctly or falsely triggering an outbreak response was estimated at different incidence and attack rates. Results: Compared with quarantine policies, test-to-stay policies are associated with similar model-projected transmission, with a mean of less than 0.25 student days per month of quarantine or isolation. Weekly universal screening is associated with approximately 50% less in-school transmission at one-seventh to one-half the societal cost of hybrid or remote schooling. The cost per infection averted in students and staff by weekly screening is lowest for schools with less vaccination, fewer other mitigation measures, and higher levels of community transmission. In settings where local student incidence is unknown or rapidly changing, surveillance testing may detect moderate to large in-school outbreaks with fewer resources compared with schoolwide screening. Conclusions and Relevance: In this modeling study of a simulated population of primary school students and simulated transmission of COVID-19, test-to-stay policies and/or screening tests facilitated consistent in-person school attendance with low transmission risk across a range of community incidence. Surveillance was a useful reduced-cost option for detecting outbreaks and identifying school environments that would benefit from increased mitigation.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/diagnosis , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19 Testing , Humans , Pandemics/prevention & control , Schools , Students , United States/epidemiology
5.
J Sch Health ; 92(5): 474-484, 2022 05.
Article in English | MEDLINE | ID: covidwho-1731205

ABSTRACT

BACKGROUND: The financial costs and human resource requirements at the school and district level to implement a SARS-CoV-2 screening program are not well known. METHODS: A consortium of Massachusetts public K-12 schools was formed to implement and evaluate a range of SARS-CoV-2 screening approaches. Participating districts were surveyed weekly about their programs, including: type of assay used, individual vs. pooled screening, approaches to return of results and deconvolution of positive pools, number and type of personnel, and hours spent implementing the screening program, and hours spent on program implementation. RESULTS: In 21 participating districts, over 21 weeks from January to June 2021, the positivity rate was 0.0% to 0.21% among students and 0.0% to 0.13% among educators/staff. The average weekly cost to implement a screening program, including assay and personnel costs, was $17.00 per person tested; this was $46.68 for individual screenings and $15.61 for pooled screenings. The total weekly costs by district ranged from $1,644 to $93,486, and districts screened between 58 and 3675 people per week. CONCLUSIONS: Where screening is recommended for the 2021 to 2022 school year due to high COVID-19 incidence, understanding the human resources and finances required to implement screening will assist district policymakers in planning.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/diagnosis , COVID-19/epidemiology , Humans , Mass Screening , Schools , Students
7.
Pediatrics ; 149(5)2022 05 01.
Article in English | MEDLINE | ID: covidwho-1674088

ABSTRACT

BACKGROUND AND OBJECTIVES: Mandatory quarantine upon exposure to coronavirus disease 2019 (COVID-19) results in a substantial number of lost days of school. We hypothesized that implementation of a state-wide test-to-stay (TTS) program would allow more students to participate in in-person learning, and not cause additional clusters of COVID-19 cases due to in-school transmission. METHODS: For the 2020-2021 academic year, Massachusetts implemented an opt-in TTS program, in which students exposed to COVID-19 in school are tested each school day with a rapid antigen test. If negative, students may participate in school-related activities that day. Testing occurs daily for a duration of 7 calendar days after exposure. Here, we report the results from the first 13 weeks of the program. RESULTS: A total of 2298 schools signed up for TTS, and 504 167 individuals out of a total population of 860 457 consented. During the first 13 weeks with complete data, 1959 schools activated the program at least once for 102 373 individual, exposed students. Out of 328 271 tests performed, 2943 positive cases were identified (per person positivity rate, 2.9%, 95% confidence interval, 2.8-3.0). A minimum of 325 328 and a maximum of 497 150 days of in-person school were saved through participation in the program. CONCLUSIONS: Daily, rapid on-site antigen testing is a safe and feasible alternative to mandatory quarantine and can be used to maximize safe in-person learning time during the pandemic.


Subject(s)
COVID-19 , Quarantine , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19 Testing , Humans , SARS-CoV-2 , Schools
8.
J Int AIDS Soc ; 25(1): e25864, 2022 01.
Article in English | MEDLINE | ID: covidwho-1632292

ABSTRACT

INTRODUCTION: The COVID-19 pandemic has affected women and children globally, disrupting antiretroviral therapy (ART) services and exacerbating pre-existing barriers to care for both pregnant women and paediatric populations. METHODS: We used the Spectrum modelling package and the CEPAC-Pediatric model to project the impact of COVID-19-associated care disruptions on three key populations in the 21 Global Plan priority countries in sub-Saharan Africa: (1) pregnant and breastfeeding women living with HIV and their children, (2) all children (aged 0-14 years) living with HIV (CLWH), regardless of their engagement in care and (3) CLWH who were engaged in care and on ART prior to the start of the pandemic. We projected clinical outcomes over the 12-month period of 1 March 2020 to 1 March 2021. RESULTS: Compared to a scenario with no care disruption, in a 3-month lockdown with complete service disruption, followed by 3 additional months of partial (50%) service disruption, a projected 755,400 women would have received PMTCT care (a 21% decrease), 187,800 new paediatric HIV infections would have occurred (a 77% increase) and 516,800 children would have received ART (a 35% decrease). For children on ART as of March 2020, we projected 507,200 would have experienced ART failure (an 80% increase). Additionally, a projected 88,400 AIDS-related deaths would have occurred (a 27% increase) between March 2020 and March 2021, with 51,700 of those deaths occurring among children engaged in care as of March 2020 (a 54% increase). CONCLUSIONS: While efforts will continue to curb morbidity and mortality stemming directly from COVID-19 itself, it is critical that providers also consider the immediate and indirect harms of this pandemic, particularly among vulnerable populations. Well-informed, timely action is critical to meet the health needs of pregnant women and children if the global community is to maintain momentum towards an AIDS-free generation.


Subject(s)
Acquired Immunodeficiency Syndrome , COVID-19 , HIV Infections , Child , Communicable Disease Control , Female , HIV Infections/drug therapy , HIV Infections/epidemiology , HIV Infections/prevention & control , Humans , Infectious Disease Transmission, Vertical/prevention & control , Pandemics , Pregnancy , SARS-CoV-2
9.
Clin Infect Dis ; 73(12): 2248-2256, 2021 12 16.
Article in English | MEDLINE | ID: covidwho-1592977

ABSTRACT

BACKGROUND: Isolation of hospitalized persons under investigation (PUIs) for coronavirus disease 2019 (COVID-19) reduces nosocomial transmission risk. Efficient evaluation of PUIs is needed to preserve scarce healthcare resources. We describe the development, implementation, and outcomes of an inpatient diagnostic algorithm and clinical decision support system (CDSS) to evaluate PUIs. METHODS: We conducted a pre-post study of CORAL (COvid Risk cALculator), a CDSS that guides frontline clinicians through a risk-stratified COVID-19 diagnostic workup, removes transmission-based precautions when workup is complete and negative, and triages complex cases to infectious diseases (ID) physician review. Before CORAL, ID physicians reviewed all PUI records to guide workup and precautions. After CORAL, frontline clinicians evaluated PUIs directly using CORAL. We compared pre- and post-CORAL frequency of repeated severe acute respiratory syndrome coronavirus 2 nucleic acid amplification tests (NAATs), time from NAAT result to PUI status discontinuation, total duration of PUI status, and ID physician work hours, using linear and logistic regression, adjusted for COVID-19 incidence. RESULTS: Fewer PUIs underwent repeated testing after an initial negative NAAT after CORAL than before CORAL (54% vs 67%, respectively; adjusted odd ratio, 0.53 [95% confidence interval, .44-.63]; P < .01). CORAL significantly reduced average time to PUI status discontinuation (adjusted difference [standard error], -7.4 [0.8] hours per patient), total duration of PUI status (-19.5 [1.9] hours per patient), and average ID physician work-hours (-57.4 [2.0] hours per day) (all P < .01). No patients had a positive NAAT result within 7 days after discontinuation of precautions via CORAL. CONCLUSIONS: CORAL is an efficient and effective CDSS to guide frontline clinicians through the diagnostic evaluation of PUIs and safe discontinuation of precautions.


Subject(s)
Anthozoa , COVID-19 , Animals , Humans , Nucleic Acid Amplification Techniques , Odds Ratio , SARS-CoV-2
10.
Clin Infect Dis ; 73(10): 1879-1881, 2021 11 16.
Article in English | MEDLINE | ID: covidwho-1526153

Subject(s)
Schools , Students , Humans
11.
MEDLINE; 2020.
Non-conventional in English | MEDLINE | ID: grc-750467

ABSTRACT

Background Healthcare resource constraints in low and middle-income countries necessitate selection of cost-effective public health interventions to address COVID-19. Methods We developed a dynamic COVID-19 microsimulation model to evaluate clinical and economic outcomes and cost-effectiveness of epidemic control strategies in KwaZulu-Natal, South Africa. Interventions assessed were Healthcare Testing (HT), where diagnostic testing is performed only for those presenting to healthcare centres;Contact Tracing (CT) in households of cases;Isolation Centres (IC), for cases not requiring hospitalisation;community health worker-led Mass Symptom Screening and diagnostic testing for symptomatic individuals (MS);and Quarantine Centres (QC), for contacts who test negative. Given uncertainties about epidemic dynamics in South Africa, we evaluated two main epidemic scenarios over 360 days, with effective reproduction numbers (R e ) of 1.5 and 1.2. We compared HT, HT+CT, HT+CT+IC, HT+CT+IC+MS, HT+CT+IC+QC, and HT+CT+IC+MS+QC, considering strategies with incremental cost-effectiveness ratio (ICER) <US$1,290/year-of-life saved (YLS) to be cost-effective. Findings With R e 1.5, HT resulted in the most COVID-19 deaths and lowest costs over 360 days. Compared with HT, HT+CT+IC+MS reduced mortality by 76%, increased costs by 16%, and was cost-effective (ICER $350/YLS). HT+CT+IC+MS+QC provided the greatest reduction in mortality, but increased costs by 95% compared with HT+CT+IC+MS and was not cost-effective (ICER $8,000/YLS). With R e 1.2, HT+CT+IC+MS was the least costly strategy, and HT+CT+IC+MS+QC was not cost-effective (ICER $294,320/YLS). Interpretation In South Africa, a strategy of household contact tracing, isolation, and mass symptom screening would substantially reduce COVID-19 mortality and be cost-effective. Adding quarantine centres for COVID-19 contacts is not cost-effective.

12.
Clin Infect Dis ; 73(9): e2908-e2917, 2021 11 02.
Article in English | MEDLINE | ID: covidwho-1501002

ABSTRACT

BACKGROUND: We projected the clinical and economic impact of alternative testing strategies on coronavirus disease 2019 (COVID-19) incidence and mortality in Massachusetts using a microsimulation model. METHODS: We compared 4 testing strategies: (1) hospitalized: polymerase chain reaction (PCR) testing only for patients with severe/critical symptoms warranting hospitalization; (2) symptomatic: PCR for any COVID-19-consistent symptoms, with self-isolation if positive; (3) symptomatic + asymptomatic once: symptomatic and 1-time PCR for the entire population; and (4) symptomatic + asymptomatic monthly: symptomatic with monthly retesting for the entire population. We examined effective reproduction numbers (Re = 0.9-2.0) at which policy conclusions would change. We assumed homogeneous mixing among the Massachusetts population (excluding those residing in long-term care facilities). We used published data on disease progression and mortality, transmission, PCR sensitivity/specificity (70%/100%), and costs. Model-projected outcomes included infections, deaths, tests performed, hospital-days, and costs over 180 days, as well as incremental cost-effectiveness ratios (ICERs, $/quality-adjusted life-year [QALY]). RESULTS: At Re = 0.9, symptomatic + asymptomatic monthly vs hospitalized resulted in a 64% reduction in infections and a 46% reduction in deaths, but required >66-fold more tests/day with 5-fold higher costs. Symptomatic + asymptomatic monthly had an ICER <$100 000/QALY only when Re ≥1.6; when test cost was ≤$3, every 14-day testing was cost-effective at all Re examined. CONCLUSIONS: Testing people with any COVID-19-consistent symptoms would be cost-saving compared to testing only those whose symptoms warrant hospital care. Expanding PCR testing to asymptomatic people would decrease infections, deaths, and hospitalizations. Despite modest sensitivity, low-cost, repeat screening of the entire population could be cost-effective in all epidemic settings.

13.
Ann Intern Med ; 174(8): 1090-1100, 2021 08.
Article in English | MEDLINE | ID: covidwho-1497804

ABSTRACT

BACKGROUND: The COVID-19 pandemic has induced historic educational disruptions. In April 2021, about 40% of U.S. public school students were not offered full-time in-person education. OBJECTIVE: To assess the risk for SARS-CoV-2 transmission in schools. DESIGN: An agent-based network model was developed to simulate transmission in elementary and high school communities, including home, school, and interhousehold interactions. SETTING: School structure was parametrized to reflect average U.S. classrooms, with elementary schools of 638 students and high schools of 1451 students. Daily local incidence was varied from 1 to 100 cases per 100 000 persons. PARTICIPANTS: Students, faculty, staff, and adult household members. INTERVENTION: Isolation of symptomatic individuals, quarantine of an infected individual's contacts, reduced class sizes, alternative schedules, staff vaccination, and weekly asymptomatic screening. MEASUREMENTS: Transmission was projected among students, staff, and families after a single infection in school and over an 8-week quarter, contingent on local incidence. RESULTS: School transmission varies according to student age and local incidence and is substantially reduced with mitigation measures. Nevertheless, when transmission occurs, it may be difficult to detect without regular testing because of the subclinical nature of most children's infections. Teacher vaccination can reduce transmission to staff, and asymptomatic screening improves understanding of local circumstances and reduces transmission. LIMITATION: Uncertainty exists about the susceptibility and infectiousness of children, and precision is low regarding the effectiveness of specific countermeasures, particularly with new variants. CONCLUSION: With controlled community transmission and moderate mitigation, elementary schools can open safety, but high schools require more intensive mitigation. Asymptomatic screening can facilitate reopening at higher local incidence while minimizing transmission risk. PRIMARY FUNDING SOURCE: Centers for Disease Control and Prevention through the Council of State and Territorial Epidemiologists, National Institute of Allergy and Infectious Diseases, National Institute on Drug Abuse, and Facebook.


Subject(s)
COVID-19/prevention & control , COVID-19/transmission , Risk Assessment , Schools , Age Factors , COVID-19 Vaccines/administration & dosage , Disease Susceptibility , Humans , Mass Screening , Pandemics , Physical Distancing , Quarantine , SARS-CoV-2 , United States/epidemiology
14.
Cell Rep Med ; 2(11): 100452, 2021 11 16.
Article in English | MEDLINE | ID: covidwho-1483013

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) transmission in K-12 schools was rare during in 2020-2021; few studies included Centers for Disease Control and Prevention (CDC)-recommended screening of asymptomatic individuals. We conduct a prospective observational study of SARS-CoV-2 screening in a mid-sized suburban public school district to evaluate the incidence of asymptomatic coronavirus disease 2019 (COVID-19), document frequency of in-school transmission, and characterize barriers and facilitators to asymptomatic screening in schools. Staff and students undergo weekly pooled testing using home-collected saliva samples. Identification of >1 case in a school prompts investigation for in-school transmission and enhancement of safety strategies. With layered mitigation measures, in-school transmission even before student or staff vaccination is rare. Screening identifies a single cluster with in-school staff-to-staff transmission, informing decisions about in-person learning. The proportion of survey respondents self-reporting comfort with in-person learning before versus after implementation of screening increases. Costs exceed $260,000 for assays alone; staff and volunteers spend 135-145 h per week implementing screening.


Subject(s)
COVID-19/diagnosis , Mass Screening , Schools , Adolescent , Adult , COVID-19/transmission , Child , Educational Personnel , Humans , Prospective Studies , Students , United States
16.
Open Forum Infect Dis ; 8(8): ofab287, 2021 Aug.
Article in English | MEDLINE | ID: covidwho-1358474

ABSTRACT

In-person learning provides substantial benefits for K-12 school students. Risk of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection among educators, staff, students, and household members can be markedly reduced by mitigation measures including masking, ventilation, and hygiene. In addition to these measures, where community transmission is moderate to high, regular SARS-CoV-2 screening testing is recommended by recent Centers for Disease Control and Prevention (CDC) guidance for unvaccinated K-12 students and staff, and supported financially by CDC and Department of Health and Human Services initiatives. Screening can provides an added layer of risk reduction, as well as data and reassurance about in-school transmission. Financial and logistical constraints have challenged implementation of screening in public schools. We report lessons learned from a collaborative of public K-12 schools implementing and evaluating screening programs, including details of population screened, site of specimen collection, assay selection, pooled testing, and resources needed. This work supported the development of a state-wide screening program and led to dissemination of online technical resources that may support other public schools in implementing CDC guidance.

18.
JAMA Netw Open ; 4(3): e214619, 2021 03 01.
Article in English | MEDLINE | ID: covidwho-1251878
19.
Ann Intern Med ; 174(4): 472-483, 2021 04.
Article in English | MEDLINE | ID: covidwho-1201212

ABSTRACT

BACKGROUND: Colleges in the United States are determining how to operate safely amid the coronavirus disease 2019 (COVID-19) pandemic. OBJECTIVE: To examine the clinical outcomes, cost, and cost-effectiveness of COVID-19 mitigation strategies on college campuses. DESIGN: The Clinical and Economic Analysis of COVID-19 interventions (CEACOV) model, a dynamic microsimulation model, was used to examine alternative mitigation strategies. The CEACOV model tracks infections accrued by students and faculty, accounting for community transmissions. DATA SOURCES: Data from published literature were used to obtain parameters related to COVID-19 and contact-hours. TARGET POPULATION: Undergraduate students and faculty at U.S. colleges. TIME HORIZON: One semester (105 days). PERSPECTIVE: Modified societal. INTERVENTION: COVID-19 mitigation strategies, including social distancing, masks, and routine laboratory screening. OUTCOME MEASURES: Infections among students and faculty per 5000 students and per 1000 faculty, isolation days, tests, costs, cost per infection prevented, and cost per quality-adjusted life-year (QALY). RESULTS OF BASE-CASE ANALYSIS: Among students, mitigation strategies reduced COVID-19 cases from 3746 with no mitigation to 493 with extensive social distancing and masks, and further to 151 when laboratory testing was added among asymptomatic persons every 3 days. Among faculty, these values were 164, 28, and 25 cases, respectively. Costs ranged from about $0.4 million for minimal social distancing to about $0.9 million to $2.1 million for strategies involving laboratory testing ($10 per test), depending on testing frequency. Extensive social distancing with masks cost $170 per infection prevented ($49 200 per QALY) compared with masks alone. Adding routine laboratory testing increased cost per infection prevented to between $2010 and $17 210 (cost per QALY gained, $811 400 to $2 804 600). RESULTS OF SENSITIVITY ANALYSIS: Results were most sensitive to test costs. LIMITATION: Data are from multiple sources. CONCLUSION: Extensive social distancing with a mandatory mask-wearing policy can prevent most COVID-19 cases on college campuses and is very cost-effective. Routine laboratory testing would prevent 96% of infections and require low-cost tests to be economically attractive. PRIMARY FUNDING SOURCE: National Institutes of Health.


Subject(s)
COVID-19/prevention & control , Communicable Disease Control/methods , Pneumonia, Viral/prevention & control , Universities , Adult , COVID-19/epidemiology , COVID-19 Testing , Communicable Disease Control/economics , Cost-Benefit Analysis , Female , Humans , Male , Masks , Mass Screening/economics , Pandemics , Physical Distancing , Pneumonia, Viral/epidemiology , SARS-CoV-2 , United States/epidemiology
20.
Infect Control Hosp Epidemiol ; 42(3): 344-347, 2021 03.
Article in English | MEDLINE | ID: covidwho-1131957

ABSTRACT

We describe an approach to the evaluation and isolation of hospitalized persons under investigation (PUIs) for coronavirus disease 2019 (COVID-19) at a large US academic medical center. Only a small proportion (2.9%) of PUIs with 1 or more repeated severe acute respiratory coronavirus virus 2 (SARS-CoV-2) nucleic acid amplification tests (NAATs) after a negative NAAT were diagnosed with COVID-19.


Subject(s)
COVID-19 Testing/statistics & numerical data , COVID-19/diagnosis , Patient Isolation/statistics & numerical data , Practice Patterns, Physicians'/standards , Academic Medical Centers , Boston , Communicable Disease Control/methods , Hospitalization , Humans , Nucleic Acid Amplification Techniques , Practice Patterns, Physicians'/organization & administration , Retrospective Studies , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL